Preposition and logical connectivities in Discrete Mathematics

 Preposition

A preposition is a declarative statement that is either true or false, but not both. Prepositions contain connectives and variables. The variables in the preposition are denoted by capital letters(A, B,....Z).

for example:

  • India is a state                     
          returns 'false'
  • Maharashtra is a country.    
          returns 'false'
  • 12-3=9                                 
          returns 'true'
  • 10-4=7                               
          returns  'false'
not prepositions  
  • A is greater than 12      
  • x+3=6
  • go and playout
these statements are not prepositions because the statements do not have either a true value or false values.

Connectives in prepositions

  • Disconjunction/OR denoted by '∨' 
  • conjunction/AND denoted by '∧'
  • Not/Negation denoted by '∾'
  • if then denoted by '→'
  • if and only if '↔'

Disconjuction/OR

It combines two statements using or.
Disconjunction is denoted by '∨'. the result is true when one of the variables is true.
the truth table for disconjunction:
PQP ∨ Q
TrueTrueTrue
TrueFalseTrue
FalseTrueTrue
FalseFalseFalse





there are two types of disconjunction :

1.Exclusive or

It combines two statements using or and it means this statement or the other statement but not both statements. it is denoted by the'⨁' sign.

truth table:
PQP ⨁ Q
TrueTrueFalse 
TrueFalseTrue
FalseTrueTrue
FalseFalseFalse

2.Inclusive or

It combines two statements using or and it means this statement or the other statement and maybe both statements. It is denoted by '⨀' symbol

truth table:
PQP ⨀ Q
TrueTrueTrue
TrueFalseTrue
FalseTrueTrue
FalseFalseFalse

Conjunction

It combines two statements using and, but, while, etc.
conjunction is denoted by the'∧' symbol. The result is true when both variables are true.
the truth table for conjunction:
PQP ∧ Q
TrueTrueTrue
TrueFalseFalse
FalseTrueFalse
FalseFalseFalse
For example:
  • P: It rains and Q: I will carry an umbrella. The conjunction of these two statements is PQ: It rains and I will carry an umbrella.

Negation

 denoted by '∿' . the result is true when the given variable is false and vice versa.
the truth table for negation:
P∿P
TrueFalse
FalseTrue
for example:
  • P: I have a pen  and negation of P is ∿P: I have not a pen
  • P: I will attend all lectures negation of P is ∿P: I will not attend all lectures
  • P: It will rain today negation of P is ∿P: It will not rain today.


Conditional ( if .....then )/Implication

If P then Q, the statement is false when P is true and Q is false. and in other cases it is true
the truth table for implication:
PQ Q
TrueTrueTrue
TrueFalseFalse
FalseTrueTrue
FalseFalseTrue

Biconditional(if and only if)

the result is true when both the variables are either true or false. if P and Q are true then the result is true and if both are false then also the result is true.
denotes by '*' or '⇔'
The truth table for biconditional:
PQP ⇔ Q
TrueTrueTrue
TrueFalseFalse
FalseTrueFalse
FalseFalseTrue

Tautologies

the tautology is a case in which all the output are true in any case of the input.
it is true for all prepositional variables.
for example:
prove this is a tautology :(∿P∨Q)→Q
truth table:
PQ∿P∿P∨Q(∿P∨Q)→Q
TrueTrueFalseTrueTrue
TrueFalseFalseFalseTrue
FalseTrueTrueTrueTrue
FalseFalseTrueFalseTrue

Contradiction

the contradiction is a case in which all the output are false in any case of the input.
it is false for all prepositional variables.
For example:
show that the preposition is a contradiction:
(P∨Q)∧(∿P∧∿Q)
PQP∨Q∿P∿Q(∿P) ∧ ( ∿B)Q(P ∨ Q) ∧ [( ∿P) ∧ (∿Q)]
TrueTrueTrueFalseFalseFalseFalse
TrueFalseTrueFalseTrueFalseFalse
FalseTrueTrueTrueFalseFalseFalse
FalseFalseFalseTrueTrueTrueFalse

Contingency

a contingency is a case in which all the output can be true or false for the given inputs.
a contingency is neither tautology nor contradiction.
for example:
∿Q→(P→Q)

PQ ∿Q(P→Q)∿Q→(P→Q)
TrueTrueFalseTrueTrue
TrueFalseTrueFalseFalse
FalseTrueFalseTrueTrue
FalseFalseTrueFalseTrue

Prepositional equivalence/Logical equivalence

if the two given propositional statements are logically equivalent if they have the same value for each input value or they have biconditional is a tautology(should be true for all variables) 

For example:
determine whether the following two statements are logically equivalent or not.
(P→Q) and (∿P∨Q)
PQ(P→Q)∿P(∿P∨Q)
TrueTrueTrueFalseTrue
TrueFalseFalseFalseFalse
FalseTrueTrueTrueTrue
FalseFalseTrueTrueTrue
the given propositional statements are logically equivalent as their truth table values for each value are the same.

Testing by 2nd method (Bi-conditionality)

PQ(P→Q)(∿P∨Q)(P→Q) ⇔ (∿P∨Q)
TrueTrueTrueTrueTrue
TrueFalseFalseFalseTrue
FalseTrueTrueTrueTrue
FalseFalseTrueTrueTrue
here, biconditionality is a tautology hence it is proved by the second method also.

Converse, Inverse, and Contrapositive Proposition


If the preposition P⇒Q is true then
  • the converse is Q⇒P 
  • the inverse is ~p => ~q
  • the contrapositive is  ~q => ~p 
The examples on the converse, inverse, and contrapositive:
1. P: John does hard work 
    Q: he will secure good marks
write converse, inverse, and contrapositive of the above statements.
solution:
P⇒Q: John does hard work then he will secure good marks                           prepositon
Q⇒P: John will secure good marks when he does hard work                          converse
~p => ~q: John doesn't work hard then he will not secure good marks         inverse
 ~q => ~p : John will not secure good marks when he doesn't work hard.   contrapsitive

Comments

Popular posts from this blog

Inclusion and Exclusion principle, Venn diagram, examples with solutions, set theory , Mathematics

Multiset and operations on multisets(union, intersection, addition, difference), solved problems

Directed graph(diagraph)Hasse Diagram Discrete mathematics